Skip to main content
Log in

High strain recovery with improved mechanical properties of gelatin–silica aerogel composites post-binding treatment

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silica aerogels are very light and highly porous materials that are intriguingly and complexly networked with large internal surface area, high hydrophobicity with extremely low density and thermal conductivity. These features make them ideal choice for applications as thermal and acoustics insulators or as optical, electrical, and energy storing devices. However, their exploitation for structural applications is primarily inhibited by their brittleness. The brittleness of the silica aerogels makes their processing and handling difficult. Volumetric shrinkage occurs, which becomes more apparent at elevated temperatures. While there are hybrid silica aerogels doped with materials such as polymer, ceramics, metals in the market, the improvements in the mechanical properties are compromised with tremendous increase in density and reduction in the insulation performance. Post-synthesis binding treatment of silica aerogels composites are not extensively explored due to the chemically inert trimethylsilyl (TMS) terminal groups on the surface of the hydrophobic silica aerogels. This paper discusses a unique fabrication method of developing a ductile silica aerogel composite solid via post-synthesis binding treatment. Gelatin–silica aerogel (GSA) and GSA–sodium dodecyl sulfate (SDS) composite blocks were produced by mixing hydrophobic aerogel granulates in a gelatin–SDS foamed solution by frothing method. The entire fabrication process and grounds for using a controlled % of gelatin as the main binder and SDS as an additive are explained. The compression testing of the blocks is presented. The associated strain recovery—an unusual phenomenon with brittle silica aerogels, observed upon unloading is highlighted and studied. The microstructure and surface characterization of these composites was examined via FESEM/EDX and XPS/ESCA, respectively. The dependency of process variables involved were analyzed through analysis of variance (ANOVA) model. Empirical models that relate the composition of gelatin, aerogel, and SDS to achieve the optimal strain recovery with the associated compressive modulus and strength and density are established. The transition from brittleness to ductility is measured in terms of compressive stress versus strain behavior for various mass fractions of gelatin and SDS. The test data presented indicate analogous behavior of these to creep-like behavior of a material typically identified as the primary, secondary, and tertiary stages. The rationale and mechanisms behind such creep-like three stages are explained using schematic diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gesser HD, Goswami PC (1989) Chem Rev 89(4):765. doi:10.1021/Cr00094a003

    Article  CAS  Google Scholar 

  2. Hunt AJ, Jantzen CA, Cao W (1991) Insulation materials: testing and applications. ASTM, Gatlinburg, p 455 ASTM Special Technical Publication

    Google Scholar 

  3. Lee K-H, Kim S-Y, Yoo K-P (1995) J Non-Cryst Solids 186:18. doi:10.1016/0022-3093(95)00066-6

    Article  CAS  ADS  Google Scholar 

  4. Lee CJ, Kim GS, Hyun SH (2002) J Mater Sci 37(11):2237. doi:10.1023/a:1015309014546

    Article  CAS  ADS  Google Scholar 

  5. Rao AP, Pajonk GM, Rao AV (2005) J Mater Sci 40(13):3481. doi:10.1007/s10853-005-2853-3

    Article  CAS  ADS  Google Scholar 

  6. Bhagat SD, Kim Y-H, Ahn Y-S, Yeo J-G (2007) Appl Surf Sci 253(6):3231. doi:10.1016/j.apsusc.2006.07.016

    Article  CAS  ADS  Google Scholar 

  7. Soleimani Dorcheh A, Abbasi MH (2008) J Mater Process Technol 199(1–3):10. doi:10.1016/j.jmatprotec.2007.10.060

    Article  CAS  Google Scholar 

  8. Alnaief M, Smirnova I (2011) J Supercrit Fluids 55(3):1118. doi:10.1016/j.supflu.2010.10.006

    Article  CAS  Google Scholar 

  9. Bhagat SD, Kim Y-H, Moon M-J, Ahn Y-S, Yeo J-G (2007) Solid State Sci 9(7):628. doi:10.1016/j.solidstatesciences.2007.04.020

    Article  CAS  ADS  Google Scholar 

  10. Parmenter KE, Milstein F (1998) J Non-Cryst Solids 223(3):179. doi:10.1016/s0022-3093(97)00430-4

    Article  CAS  ADS  Google Scholar 

  11. Scherer GW, Smith DM, Qiu X, Anderson JM (1995) J Non-Cryst Solids 186:316. doi:10.1016/0022-3093(95)00074-7

    Article  CAS  ADS  Google Scholar 

  12. Moner-Girona M, Roig A, Molins E, Martinez E, Esteve J (1999) Appl Phys Lett 75(5):653. doi:10.1063/1.124471

    Article  CAS  ADS  Google Scholar 

  13. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Chem Mater 17(5):1085. doi:10.1021/cm048063u

    Article  CAS  Google Scholar 

  14. Meador MAB, Weber AS, Hindi A, Naumenko M, McCorkle L, Quade D, Vivod SL, Gould GL, White S, Deshpande K (2009) ACS Appl Mater Interfaces 1(4):894. doi:10.1021/am900014z

    Article  PubMed  CAS  Google Scholar 

  15. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chem Mater 18(2):285. doi:10.1021/cm0513841

    Article  CAS  Google Scholar 

  16. Xu Z, Gan L, Jia Y, Hao Z, Liu M, Chen L (2007) J Sol-Gel Sci Technol 41(3):203. doi:10.1007/s10971-006-1500-z

    Article  CAS  Google Scholar 

  17. Ge DT, Yang LL, Li Y, Zhao JP (2009) J Non-Cryst Solids 355(52–54):2610. doi:10.1016/j.jnoncrysol.2009.09.017

    Article  CAS  ADS  Google Scholar 

  18. Gupta N, Ricci W (2008) J Mater Process Technol 198(1–3):178. doi:10.1016/j.jmatprotec.2007.06.084

    Article  CAS  Google Scholar 

  19. Veronica V, Adrian T (2010) Water and life. CRC Press, Boca Raton, p 235. doi:10.1201/EBK1439803561-c16

    Google Scholar 

  20. Schweitzer PA (2006) Corrosion of polymers and elastomers. CRC Press, Boca Raton, p 147. doi:10.1201/9780849382468.ch3

    Chapter  Google Scholar 

  21. Chanda M, Roy SK (2008) Industrial polymers, specialty polymers, and their applications. CRC Press, Boca Raton, p 1. doi:10.1201/9781420080599.ch1

    Chapter  Google Scholar 

  22. Boris D, Anatoliy Z, Elena Y (2001) Smart Polymers. CRC Press, London. doi:10.1201/NOE0415267984.ch10

    Google Scholar 

  23. Gary C, Mikhail F, Parminder S (2008) Technology of pressure-sensitive adhesives and products. CRC Press, Boca Raton, p 71. doi:10.1201/9781420059410.ch7

    Google Scholar 

  24. Frydrych M, Wan C, Stengler R, O’Kelly KU, Chen B (2011) J Mater Chem 21(25):9103. doi:10.1039/C1jm10788g

    Article  CAS  Google Scholar 

  25. Aristippos G (2002) Protein-based films and coatings. CRC Press, Boca Raton. doi:10.1201/9781420031980.ch16

    Google Scholar 

  26. Fidler C, Simonton TC (1996) Aerogel-in-foam thermal insulation and its preparation. US Patent, 5569513, 29 Oct 1996

    Google Scholar 

  27. Fidler C, Simonton TC (1996) Aerogel-in-foam thermal insulation and its preparation. US Patent, 6136216, 24 Oct 2000

  28. Mo X, Sun X (2000) J Polym Environ 8(4):161. doi:10.1023/a:1015241609497

    Article  CAS  Google Scholar 

  29. Ruiz CC, Díaz-López L, Aguiar J (2008) J Dispers Sci Technol 29(2):266. doi:10.1080/01932690701707571

    Article  CAS  Google Scholar 

  30. Guo J, Nguyen BN, Li L, Meador MAB, Scheiman DA, Cakmak M (2013) J Mater Chem A 1(24):7211. doi:10.1039/C3TA00439B

    Article  CAS  Google Scholar 

  31. Zhong Y-H, Zhou B, Gui J-Y, Li Y-N, Du A, Shen J, Wu G-M, Zhang Z-H (2011) At Energy Sci Technol 45(10):1170

    CAS  Google Scholar 

  32. Rao AV, Kulkarni MM, Pajonk GM, Amalnerkar DP, Seth T (2003) J Sol-Gel Sci Technol 27(2):103. doi:10.1023/a:1023765030983

    Article  CAS  Google Scholar 

  33. Ashby MF, Gibson LJ (1997) Cellular solids-structure and properties. 2nd edn. Cambridge university Press, Cambridge

  34. Moulder JF, Chastain J, King RC (1995) In: Chastain J, King RC Jr (eds) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Physical Electronics, Eden Prairie, MN

  35. Wang S-J, Jin I-S, Park H-H (1998) Surf Coat Technol 100–101:59. doi:10.1016/S0257-8972(97)00588-4

    Article  Google Scholar 

  36. Yang H-S, Choi S-Y, Hyun S-H, Park C-G (1999) Thin Solid Films 348(1–2):69. doi:10.1016/S0040-6090(99)00016-4

    Article  CAS  ADS  Google Scholar 

  37. Jo M-H, Hong J-K, Park H–H, Kim J–J, Hyun S-H, Choi S-Y (1997) Thin Solid Films 308–309:490. doi:10.1016/S0040-6090(97)00437-9

    Article  Google Scholar 

  38. Mazur JH (1984) High resolution electron microscopy study of silica aerogel transparent insulation. In: Proceedings of SPIE vol 502

  39. Woignier T, Phalippou J, Vacher R (1989) J Mater Res 4(03):688. doi:10.1557/JMR.1989.0688

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The first author gratefully acknowledges Nanyang Technological University (NTU) for financial and other support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Sachithanadam.

Appendix

Appendix

See Tables 5 and 6

Table 5 Experimental data for density GSA and GSA–SDS composite blocks
Table 6 Experimental data for strain recovery, compressive strength, and compressive modulus GSA and GSA–SDS composite blocks

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachithanadam, M., Joshi, S.C. High strain recovery with improved mechanical properties of gelatin–silica aerogel composites post-binding treatment. J Mater Sci 49, 163–179 (2014). https://doi.org/10.1007/s10853-013-7690-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7690-1

Keywords

Navigation